Respuesta :
Answer : The original concentration of copper (II) sulfate in the sample is, [tex]5.6\times 10^{-1}g/L[/tex]
Explanation :
Molar mass of Cu = 63.5 g/mol
First we have to calculate the number of moles of Cu.
Number of moles of Cu = [tex]\frac{\text{Mass of Cu}}{\text{Molar mass of Cu}}=\frac{89\times 10^{-3}g}{63.5g/mol}=1.40\times 10^{-3}mole[/tex]
Now we have to calculate the number of moles of [tex]CuSO_4[/tex]
Number of moles of Cu = Number of moles of [tex]CuSO_4[/tex]
Number of moles of [tex]CuSO_4[/tex] = [tex]1.40\times 10^{-3}mole[/tex]
Now we have to calculate the molarity of [tex]CuSO_4[/tex]
[tex]\text{Molarity}=\frac{\text{Moles of }CuSO_4\times 1000}{\text{Volume of solution (in mL)}}[/tex]
Now put all the given values in this formula, we get:
[tex]\text{Molarity}=\frac{1.40\times 10^{-3}mole\times 1000}{400.mL}=0.0035M[/tex]
To change mol/L into g/L, we need to multiply it with molar mass of [tex]CuSO_4[/tex]
Molar mass of [tex]CuSO_4[/tex]= 159.609 g/mL
Concentration in g/L = [tex]0.0035M\times 159.609g/mol=0.5586g/L\approx 5.6\times 10^{-1}g/L[/tex]
Thus, the original concentration of copper (II) sulfate in the sample is, [tex]5.6\times 10^{-1}g/L[/tex]