Respuesta :
Answer:
0.714 liter.
Explanation:
Given:
The balloon initially has a volume of 0.4 liters and a temperature of 20 degrees Celsius.
It is heated to a temperature of 250 degrees Celsius.
Question asked:
What will be the volume of the balloon after he heats it to a temperature of 250 degrees Celsius ?
Solution:
By using:
[tex]PV=nRT[/tex]
Assuming pressure as constant,
V∝ T
Now, let K is the constant.
V = KT
Let initial volume of balloon , [tex]V_{1}[/tex] = 0.4 liter
1000 liter = 1 meter cube
1 liter = [tex]\frac{1}{1000} m^{3} = 10^{-3} m^{3[/tex]
0.4 liter = [tex]0.4\times10^{-3}=4\times10^{-4} m^{3}[/tex]
And initial temperature of balloon, [tex]T_{1}[/tex] = 20°C = (273 + 20)K
= 293 K
Let the final volume of balloon is [tex]V_{2}[/tex]
And a given, final temperature of balloon, [tex]T_{2}[/tex] is 250°C = (273 + 250)K
= 523 K
Now, [tex]V_{1}[/tex] = [tex]KT_{1}[/tex]
[tex]4\times10^{-4}=K\times293\ (equation\ 1 )[/tex]
[tex]V_{2}[/tex] = [tex]KT_{2}[/tex]
[tex]=K\times523\ (equation 2)[/tex]
Dividing equation 1 and 2,
[tex]\frac{4\times10^{-4}}{V_{2} } =\frac{K\times293}{K\times523}[/tex]
K cancelled by K.
By cross multiplication:
[tex]293V_{2} =4\times10^{-4} \times523\\V_{2} =\frac{ 4\times10^{-4} \times523\\}{293} \\ = \frac{2092\times10^{-4}}{293} \\ =7.14\times10^{-4}m^{3}[/tex]
Now convert it into liter with the help of calculation done above.
[tex]7.14\times10^{-4} \times1000\\7.14\times10^{-4} \times10^{3} \\0.714\ liter[/tex]
Therefore, the volume of the balloon be after he heats it to a temperature of 250 degrees Celsius is 0.714 liter.