A man heats a balloon in the oven. If the balloon initially has a volume of 0.4 liters and a temperature of 20 degrees celsius, what will the volume of the balloon be after he heats it to a temperature of 250 degrees celsius?

Respuesta :

Answer:

0.714 liter.

Explanation:

Given:

The balloon initially has a volume of 0.4 liters and a temperature of 20 degrees Celsius.

It is heated to a temperature of 250 degrees Celsius.

Question asked:

What will be the volume of the balloon after he heats it to a temperature of 250 degrees Celsius ?

Solution:

By using:

[tex]PV=nRT[/tex]

Assuming pressure as constant,

V∝ T

Now, let  K is the constant.

V = KT

Let initial volume of balloon , [tex]V_{1}[/tex] = 0.4 liter

1000 liter = 1 meter cube

1 liter = [tex]\frac{1}{1000} m^{3} = 10^{-3} m^{3[/tex]

0.4 liter = [tex]0.4\times10^{-3}=4\times10^{-4} m^{3}[/tex]

And initial temperature of balloon, [tex]T_{1}[/tex] = 20°C = (273 + 20)K

                                                                          = 293 K

Let the final volume of balloon is [tex]V_{2}[/tex]

And a given, final temperature of balloon, [tex]T_{2}[/tex] is 250°C = (273 + 250)K

                                                                                          = 523 K

Now, [tex]V_{1}[/tex] = [tex]KT_{1}[/tex]

          [tex]4\times10^{-4}=K\times293\ (equation\ 1 )[/tex]

[tex]V_{2}[/tex] = [tex]KT_{2}[/tex]

    [tex]=K\times523\ (equation 2)[/tex]

Dividing equation 1 and 2,

 [tex]\frac{4\times10^{-4}}{V_{2} } =\frac{K\times293}{K\times523}[/tex]

K cancelled by K.

By cross multiplication:

[tex]293V_{2} =4\times10^{-4} \times523\\V_{2} =\frac{ 4\times10^{-4} \times523\\}{293} \\ = \frac{2092\times10^{-4}}{293} \\ =7.14\times10^{-4}m^{3}[/tex]

Now convert it into liter with the help of calculation done above.

[tex]7.14\times10^{-4} \times1000\\7.14\times10^{-4} \times10^{3} \\0.714\ liter[/tex]

Therefore, the volume of the balloon be after he heats it to a temperature of 250 degrees Celsius is 0.714 liter.

ACCESS MORE