If 3x-y=123x−x=123, x, minus, y, equals, 12, what is the value of \frac{8^x}{2^y} 2 y 8 x ​ start fraction, 8, start superscript, x, end superscript, divided by, 2, start superscript, y, end superscript, end fraction

Respuesta :

Answer:

[tex]\frac{8^x}{2^y}[/tex] = 4096

Step-by-step explanation:

Rules:

  1. [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]
  2. [tex]a^m\times a^n= a^{m+n}[/tex]
  3. [tex](a^m)^n=a^{m\times n}[/tex]

Given that,

3x-y =12

Therefore

[tex]\frac{8^x}{2^y}[/tex]

[tex]=\frac{(2^3)^x}{2^y}[/tex]  [ since [tex]8=2^3[/tex] ]

[tex]=\frac{2^{3x}}{2^y}[/tex]   [ applying 3rd rule]

[tex]=2^{3x-y}[/tex] [ applying 2nd rule]

[tex]=2^{12}[/tex]   [ since 3x-y =12]

=4096

LigCap

Answer:4096

Step-by-step explanation:

I’ve done this question before multiple times.

ACCESS MORE