Answer: Thus the value of [tex]K_{eq}[/tex] is 110.25
Explanation:
Initial moles of [tex]I_2[/tex] = 0.500 mole
Initial moles of [tex]Br_2[/tex] = 0.500 mole
Volume of container = 1 L
Initial concentration of [tex]I_2=\frac{moles}{volume}=\frac{0.500moles}{1L}=0.500M[/tex]
Initial concentration of [tex]Br_2=\frac{moles}{volume}=\frac{0.500moles}{1L}=0.500M[/tex]
equilibrium concentration of [tex]IBr=\frac{moles}{volume}=\frac{0.84mole}{1L}=0.84M[/tex] [/tex]
The given balanced equilibrium reaction is,
[tex]I_2(g)+Br_2(g)\rightleftharpoons 2IBr(g)[/tex]
Initial conc. 0.500 M 0.500 M 0 M
At eqm. conc. (0.500-x) M (0.500-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[IBr]^2}{[Br_2]\times [I_2]}[/tex]
[tex]K_c=\frac{(2x)^2}{(0.500-x)\times (0.500-x)}[/tex]
we are given : 2x = 0.84 M
x= 0.42
Now put all the given values in this expression, we get :
[tex]K_c=\frac{(0.84)^2}{(0.500-0.42)\times (0.500-0.42)}[/tex]
[tex]K_c=110.25[/tex]
Thus the value of the equilibrium constant is 110.25