Respuesta :
Answer:
4.52389342117 V
0.196349540849 s
0.589048622548 s
0.785398163397 s
Explanation:
B = Magnetic field = 1.2 T
A = Area = [tex]\dfrac{\pi}{4}d^2[/tex]
d = Diamter = 10 cm
N = Number of turns = 60 turn
[tex]\omega[/tex] = Angular velocity = 8 rad/s
Peak EMF is given by
[tex]V=BAN\omega\\\Rightarrow V=1.2\times \dfrac{\pi}{4}\times 0.1^2\times 60\times 8\\\Rightarrow V=4.52389342117\ V[/tex]
Peak EMF is 4.52389342117 V
Time is given by (maximum)
[tex]\omega t=90^{\circ}\\\Rightarrow \omega t=90\times\dfrac{\pi}{180}\ rad\\\Rightarrow t=90\times\dfrac{\pi}{180}\times \dfrac{1}{\omega}\\\Rightarrow t=90\times\dfrac{\pi}{180}\times \dfrac{1}{8}\\\Rightarrow t=0.196349540849\ s[/tex]
Peak EMF is reached in 0.196349540849 s
Negative case
[tex]\omega t=270^{\circ}\\\Rightarrow \omega t=270\times\dfrac{\pi}{180}\ rad\\\Rightarrow t=270\times\dfrac{\pi}{180}\times \dfrac{1}{\omega}\\\Rightarrow t=270\times\dfrac{\pi}{180}\times \dfrac{1}{8}\\\Rightarrow t=0.589048622548\ s[/tex]
The time taken is 0.589048622548 s
For output voltage
[tex]\omega t=360^{\circ}\\\Rightarrow \omega t=360\times\dfrac{\pi}{180}\ rad\\\Rightarrow t=360\times\dfrac{\pi}{180}\times \dfrac{1}{\omega}\\\Rightarrow t=360\times\dfrac{\pi}{180}\times \dfrac{1}{8}\\\Rightarrow t=0.785398163397\ s[/tex]
Time taken is 0.785398163397 s