The scores of students on the ACT college entrance exam in a recent year had the normal distribution with mean  =18.6 and standard deviation  =5.9. a) What is the probability that a single student randomly chosen from all those taking the test scores 21 or higher? b) The average score of the 76 students at Northside High who took the test was x =20.4. What is the probability that the mean score for 76 students randomly selected from all who took the test nationally is 20.4 or higher?

Respuesta :

Answer:

a) 33% probability that a single student randomly chosen from all those taking the test scores 21 or higher.

b) 0.39% probability that the mean score for 76 students randomly selected from all who took the test nationally is 20.4 or higher

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sample means with size n of at least 30 can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 18.6, \sigma = 5.9[/tex]

a) What is the probability that a single student randomly chosen from all those taking the test scores 21 or higher?

This is 1 subtracted by the pvalue of Z when X = 21. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{21 - 18.6}{5.4}[/tex]

[tex]Z = 0.44[/tex]

[tex]Z = 0.44[/tex] has a pvalue of 0.67

1 - 0.67 = 0.33

33% probability that a single student randomly chosen from all those taking the test scores 21 or higher.

b) The average score of the 76 students at Northside High who took the test was x =20.4. What is the probability that the mean score for 76 students randomly selected from all who took the test nationally is 20.4 or higher?

Now we have [tex]n = 76, s = \frac{5.9}{\sqrt{76}} = 0.6768[/tex]

This probability is 1 subtracted by the pvalue of Z when X = 20.4. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{20.4 - 18.6}{0.6768}[/tex]

[tex]Z = 2.66[/tex]

[tex]Z = 2.66[/tex] has a pvalue of 0.9961

1 - 0.9961 = 0.0039

0.39% probability that the mean score for 76 students randomly selected from all who took the test nationally is 20.4 or higher

ACCESS MORE