Answer:
a) [tex]L = 0.756\,\frac{kg\cdot m^{2}}{s}[/tex], b) [tex]\omega = 92.195\,\frac{rad}{s}[/tex]
Explanation:
b) Final angular speed is obtained by using the concept of Angular Momentum and Impact Theorem:
[tex]I_{g}\cdot \omega_{o} + T \cdot \Delta t = I_{g}\cdot \omega[/tex]
[tex]\omega = \omega_{o} +\frac{T\cdot \Delta t}{I_{g}}[/tex]
[tex]\omega = 0\,\frac{rad}{s} + \frac{(14\,N\cdot m)\cdot (54\times 10^{-3}\,s)}{8.2\times 10^{-3}\kg\cdot m^{2}}[/tex]
[tex]\omega = 92.195\,\frac{rad}{s}[/tex]
a) The angular momentum of the disk is:
[tex]L = (8.2\times 10^{-3}\,kg\cdot m^{2})\cdot (92.195\,\frac{rad}{s} )[/tex]
[tex]L = 0.756\,\frac{kg\cdot m^{2}}{s}[/tex]