Answer:
[tex]-3.4\times 10^5 N/C[/tex]
Explanation:
We are given that
[tex]q_0=-2.1\mu C=-2.1\times 10^{-6} C[/tex]
[tex]1\mu C=10^{-6} C[/tex]
[tex]r_1=6.5 cm=6.54\times 10^{-2} m[/tex]
[tex]1 m=100 cm[/tex]
[tex]r_2=9.48 cm=9.48\times 10^{-2} m[/tex]
[tex]\rho=7.36\times 10^{-4} C/m^3[/tex]
We have to find the electric field inside the solid at distance of 9.48 cm from the center of the cavity.
Volumetric charge density,[tex]\rho=\frac{Q}{V}[/tex]
Charge on spherical solid=[tex]Q=V\rho=\frac{4}{3}\pi(r^3_2-r^3_1)\rho[/tex]
[tex]Q=\frac{4}{3}\pi((9.48\times 10^{-2})^3-(6.54\times 10^{-2})^3)\times 7.36\times 10^{-4}=1.76\times 10^{-6} C[/tex]
Electric field =Electric field due to spherical charge solid +electric field due to charge at center
[tex]E=\frac{KQ}{r^2}+\frac{Kq_0}{r^2}=\frac{k}{r^2}(Q+q_0)[/tex]
Where [tex]k=9\times 10^9[/tex]
[tex]E=\frac{9\times 10^9\times}{(9.48\times 10^{-2})^2}(1.76\times 10^{-6}-2.1\times 10^{-6})=-3.4\times 10^5 N/C[/tex]
Where negative sign indicates that the direction of electric field is inward.