Answer:
Test statistic = 1.94
P-value = 0.0421
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 142 milligrams per deciliter
Sample mean, [tex]\bar{x}[/tex] = 145.3 milligrams per deciliter
Sample size, n = 10
Alpha, α = 0.05
Sample standard deviation, s = 5.39 milligrams per deciliter
First, we design the null and the alternate hypothesis
[tex]H_{0}: \mu = 142\text{ milligrams per deciliter}\\H_A: \mu > 142\text{ milligrams per deciliter}[/tex]
We use one-tailed t test to perform this hypothesis.
Formula:
[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]
Putting all the values, we have
[tex]t_{stat} = \displaystyle\frac{145.3 - 142}{\frac{5.39}{\sqrt{10}} } = 1.934[/tex]
We can calculate the p-value as:
P-value = 0.0421