Answer:
[tex]P(X \geq0.55) \leq 0.22[/tex]
Step-by-step explanation:
Using central Limit Theorem (CLT), The sum of 100 random variables;
[tex]Y=X_1+X_2+...+X_{100}[/tex] is approximately normally distributed with
Y ~ N (100 × [tex]\frac{1}{3^2}[/tex] ) = N ( 50, [tex]\frac{100}{9}[/tex] )
The approximate probability that it will take this child over 55 seconds to complete spinning can be determined as follows;
N ( 50, [tex]\frac{100}{9}[/tex] )
[tex]P(Y>55) =P(Z>\frac{55-50}{10/3})[/tex]
[tex]P(Y>55) =P(Z>1.5)[/tex]
[tex]P(Y>55) =\phi (-1.5)[/tex]
[tex]P(Y>55) =0.0668[/tex]
Using Chebyshev's inequality:
[tex]P(|X-\mu\geq K)\leq \frac{\sigma^2}{K^2}[/tex]
Let assume that X has a symmetric distribution:
Then:
[tex]2P(X-\mu\geq K)\leq) \frac{\sigma^2}{K^2}[/tex]
[tex]2P(X \geq \mu+K)\leq) \frac{\sigma^2}{K^2}[/tex]
[tex]2P(X\geq0.5+0.05)\leq \frac{\frac{1}{\frac{3^2}{100} } }{0.05^2}[/tex] where: ([tex]\sigma^2 = \frac{1}{3^2/100}[/tex])
[tex]P(X \geq0.55) \leq 0.22[/tex]