Answer:
2047
Step-by-step explanation:
We are given that
Growing rate=0.7%
[tex]\frac{dp}{dt}=\frac{0.7}{100}P[/tex]
[tex]\int \frac{dP}{P}=0.007\int dt[/tex]
[tex]lnP=0.007t+C[/tex]
Using the formula
[tex]\int \frac{dx}{x}=ln x+C[/tex]
[tex]P=e^{0.007t+C}=e^{0.007t}\cdot e^C=Ae^{0.007t}[/tex]
[tex]e^C=A[/tex]
Initially when t=0,P=323 million
Substitute the values
[tex]323 million=A[/tex]
[tex]P=323e^{0.007t}[/tex]
Now, substitute P=400 million
[tex]400=323e^{0.007t}[/tex]
[tex]ln\frac{400}{323}=0.007t[/tex]
[tex]ln(1.2384)=0.007t[/tex]
[tex]t=\frac{ln(1.2384}{0.007}[/tex]
[tex]t=30.5\approx 31 Years[/tex]
Year=2016+31=2047
Hence,In 2047 the U.S population will reach 400 million people.