In 2016 the United States had a population of about 323 million people and was growing at 0.7 %. Use an explicit exponential model to predict what year the U.S. population will reach 400 million people

Respuesta :

Answer:

2047

Step-by-step explanation:

We are given that

Growing rate=0.7%

[tex]\frac{dp}{dt}=\frac{0.7}{100}P[/tex]

[tex]\int \frac{dP}{P}=0.007\int dt[/tex]

[tex]lnP=0.007t+C[/tex]

Using the formula

[tex]\int \frac{dx}{x}=ln x+C[/tex]

[tex]P=e^{0.007t+C}=e^{0.007t}\cdot e^C=Ae^{0.007t}[/tex]

[tex]e^C=A[/tex]

Initially when t=0,P=323 million

Substitute the values

[tex]323 million=A[/tex]

[tex]P=323e^{0.007t}[/tex]

Now, substitute P=400 million

[tex]400=323e^{0.007t}[/tex]

[tex]ln\frac{400}{323}=0.007t[/tex]

[tex]ln(1.2384)=0.007t[/tex]

[tex]t=\frac{ln(1.2384}{0.007}[/tex]

[tex]t=30.5\approx 31 Years[/tex]

Year=2016+31=2047

Hence,In 2047 the U.S population will reach 400 million people.

RELAXING NOICE
Relax