Answer:
[tex]\frac{\dot V_{A}}{\dot V_{B}}\approx 5.657[/tex]
Explanation:
The head loss due to friction has the following model:
[tex]\Delta h_{l} = f\cdot \frac{L}{D}\cdot \frac{v^{2}}{2\cdot g}[/tex]
[tex]\Delta h_{l} = f \cdot \frac{L}{D} \cdot \frac{1}{2\cdot g}\cdot \frac{\dot V^{2}}{\frac{\pi^{2}}{16}\cdot D^{4} }[/tex]
[tex]\Delta h_{l} = \frac{8\cdot f\cdot L \cdot \dot V^{2}}{\pi^{2}\cdot g \cdot D^{5}}[/tex]
Given that both pipes are connected parallel:
[tex]\frac{f\cdot L \cdot \dot V_{A}^{2}}{4\cdot \pi^{2}\cdot g \cdot D^{5}} = \frac{8\cdot f\cdot L \cdot \dot V_{B}^{2}}{\pi^{2}\cdot g \cdot D^{5}}[/tex]
[tex]\dot V_{A}^{2} = 32\cdot \dot V_{B}^{2}[/tex]
[tex]\frac{\dot V_{A}}{\dot V_{B}}= \sqrt{32}[/tex]
[tex]\frac{\dot V_{A}}{\dot V_{B}}\approx 5.657[/tex]