Answer:
the sample size n= 771
sample proportion is p = 1/2
Step-by-step explanation:
Step1:-
marginal error formula is [tex]\frac{2S.D}{\sqrt{n} }[/tex]
but if 'n' is sample size then [tex]n = \frac{1}{(margin error)^{2} }[/tex]
Given margin error is 36% = 0.036
[tex]n= \frac{1}{(0.036)^2}[/tex]
on simplification , we get n= 777 polling agencies
Step 2:-
[tex]Margin of error = \frac{2\sqrt{p(1-p)} }{\sqrt{n} }[/tex]
substitute values , we get
[tex]\frac{36}{100} = \frac{2\sqrt{p(1-p)} }{\sqrt{771} }[/tex]
after simplification, we get
[tex]\sqrt{p(1-p)} = \frac{1}{2}[/tex]
squaring on both sides, we get
[tex]p(1-p) = \frac{1}{4}[/tex]
multiply 'p' inside
[tex]p-p^{2} =\frac{1}{4}[/tex]
cross multiplication '4' and simplify
[tex]4p^{2} -4p +1 =0[/tex] ........(1)
finding 'p' value
The equation (1) is of the form [tex](a-b)^{2} = a^{2} -2ab+b^{2}[/tex]
[tex](2p)^{2} -2(2p)(1)+1^{2} = (2p-1)^2[/tex]
[tex](2p-1)^2 =0[/tex]
[tex]p=\frac{1}{2}[/tex]
conclusion:-
The sample size is 771
the sample proportion is p = [tex]\frac{1}{2}[/tex]