Explanation:
First, we will calculate the entropies as follow.
[tex]\Delta S_{2} = C_{p_{2}} ln \frac{T_{2}}{T_{1}}[/tex] J/K mol
As, [tex]T_{1}[/tex] = 298 K, [tex]T_{2}[/tex] = 373.8 K
Putting the given values into the above formula we get,
[tex]\Delta S_{2} = C_{p_{2}} ln \frac{T_{2}}{T_{1}}[/tex] J/K mol
= [tex]81.6 ln (\frac{373.8}{298})[/tex]
= 18.5 J/K mol
Now,
[tex]\Delta S_{3} = \frac{\Delta H_{vap}}{T_{b.p}}[/tex]
= [tex]\frac{35270 J}{373.8}[/tex]
= 94.2 J/mol K
Also,
[tex]\Delta S_{4} = C_{p_{4}} ln \frac{T_{2}}{T_{1}}[/tex]
= [tex]43.89 \times ln (\frac{800}{373.8})[/tex]
= 33.4 J/K mol
Now, we will calculate the entropy of one mole of methanol vapor at 800 K as follows.
[tex]\Delta S_{T} = \Delta S^{o}_{1} + \Delta S_{2} + \Delta S_{3} + \Delta S_{4}[/tex]
= (126.8 + 18.5 + 94.2 + 33.4) J/K mol
= 272.9 J/K mol
Thus, we can conclude that the entropy of one mole of methanol vapor at 800 K is 272.9 J/K mol.