Police often monitor traffic with "K-band" radar guns, which operate in the microwave region at 22.235 GHz (1 GHz = 109 Hz). Find the wavelength (in nm and Å) of this radiation. Enter your answers in scientific notation.

Respuesta :

Answer: The wavelength is [tex]0.013\times 10^{9}nm[/tex] and [tex]0.013\times 10^{10}A^0[/tex] of this radiation

Explanation:

To calculate the wavelength of light, we use the equation:

[tex]\lambda=\frac{c}{\nu}[/tex]

where,

[tex]\lambda[/tex] = wavelength of the light  = ?

c = speed of light = [tex]3\times 10^8m/s[/tex]

[tex]\nu[/tex] = frequency of light = [tex]22.235GHz=22.235\times 10^{9}Hz=22.235\times 10^{9}s^{-1}[/tex]

[tex]\lambda=\frac{3\times 10^8m/s}{22.235\times 10^9s^{-1}}=0.013m[/tex]

[tex]\lambda=0.013m=0.013\times 10^{9}nm[/tex]     [tex]1m=10^{9}nm[/tex]

[tex]\lambda=0.013m=0.013\times 10^{10}A^0[/tex]      [tex]1m=10^{10}A^0[/tex]

Thus wavelength is [tex]0.013\times 10^{9}nm[/tex] and [tex]0.013\times 10^{10}A^0[/tex] of this radiation

ACCESS MORE