Answer: The wavelength is [tex]0.013\times 10^{9}nm[/tex] and [tex]0.013\times 10^{10}A^0[/tex] of this radiation
Explanation:
To calculate the wavelength of light, we use the equation:
[tex]\lambda=\frac{c}{\nu}[/tex]
where,
[tex]\lambda[/tex] = wavelength of the light = ?
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\nu[/tex] = frequency of light = [tex]22.235GHz=22.235\times 10^{9}Hz=22.235\times 10^{9}s^{-1}[/tex]
[tex]\lambda=\frac{3\times 10^8m/s}{22.235\times 10^9s^{-1}}=0.013m[/tex]
[tex]\lambda=0.013m=0.013\times 10^{9}nm[/tex] [tex]1m=10^{9}nm[/tex]
[tex]\lambda=0.013m=0.013\times 10^{10}A^0[/tex] [tex]1m=10^{10}A^0[/tex]
Thus wavelength is [tex]0.013\times 10^{9}nm[/tex] and [tex]0.013\times 10^{10}A^0[/tex] of this radiation