A 100-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.400 rev/s in 2.00 s

Respuesta :

Answer:

The force required is equal to [tex]30\pi N[/tex].

Explanation:

We know that

     Torque = force × perpendicular distance

                  = F × R = I×[tex]\alpha[/tex]

               I = M×[tex]\frac{R^{2} }{2}[/tex]

  From above equation [tex]\alpha = \frac{FR}{I}[/tex]              .............. 1

      We know that

              [tex]w=w_{o} +\alpha t[/tex]                      ...........................2

               Given that t= 2 sec

                                  [tex]w_{o} = 0[/tex]

                                  [tex]w=0.4 rev/s = 0.8\pi rad/s[/tex]

From equation 1 and 2 , we get

                  F =  [tex]\frac{wI}{RT}[/tex]  =  [tex]\frac{w\times m \times r}{2t}[/tex]

    Upon substituting the above values we will be getting

          F = [tex]30\pi N[/tex]

                   

ACCESS MORE