[tex]\huge\boxed{y=\frac{1}{23}x-\frac{73}{23}}[/tex]
First, find the slope perpendicular to [tex]-23[/tex]. We can do this by finding the opposite reciprocal.
Multiply the slope by [tex]-1[/tex] and write the result as a fraction.
[tex]-23*-1=23=\frac{23}{1}[/tex]
Flip the numerator and the denominator.
[tex]\frac{23}{1}\longrightarrow\frac{1}{23}[/tex]
This is the slope of line [tex]m[/tex]. Since lines [tex]m[/tex] and [tex]n[/tex] are perpendicular, this is also the slope of line [tex]n[/tex].
Write the formula for point-slope form.
[tex]y-y_1=m(x-x_1)[/tex]
Substitute in the values for line [tex]n[/tex].
[tex]y-(-3)=\frac{1}{23}(x-4)[/tex]
Simplify the negative subtraction.
[tex]y+3=\frac{1}{23}(x-4)[/tex]
Distribute the [tex]\frac{1}{23}[/tex] to the [tex](x-4)[/tex].
[tex]y+3=\frac{1}{23}x-\frac{4}{23}[/tex]
Subtract [tex]3[/tex] — which is equivalent to [tex]\frac{69}{23}[/tex] — from both sides.
[tex]\boxed{y=\frac{1}{23}x-\frac{73}{23}}[/tex]