Respuesta :

The equation of the line is [tex]y=-\frac{1}{3}+\frac{7}{3}[/tex]

Explanation:

The given equation is [tex]y=3 x-2[/tex]

Slope:

Since, the equation of the line is perpendicular to the equation [tex]y=3 x-2[/tex], then, the slope is given by

[tex]m=-\frac{1}{3}[/tex]

Hence, the slope is [tex]m=-\frac{1}{3}[/tex]

Equation of the line:

The equation of the line can be determined using the formula,

[tex]y-y_1=m(x-x_1)[/tex]

Substituting the point (-2,3) and the slope [tex]m=-\frac{1}{3}[/tex], in the above formula, we get,

[tex]y-3=-\frac{1}{3}(x+2)[/tex]

Simplifying, we get,

[tex]y-3=-\frac{1}{3}x-\frac{2}{3}[/tex]

     [tex]y=-\frac{1}{3}x-\frac{2}{3}+3[/tex]

     [tex]y=-\frac{1}{3}+\frac{7}{3}[/tex]

Therefore, the equation of the line is [tex]y=-\frac{1}{3}+\frac{7}{3}[/tex]

ACCESS MORE