The equation of the line is [tex]y=-\frac{1}{3}+\frac{7}{3}[/tex]
Explanation:
The given equation is [tex]y=3 x-2[/tex]
Slope:
Since, the equation of the line is perpendicular to the equation [tex]y=3 x-2[/tex], then, the slope is given by
[tex]m=-\frac{1}{3}[/tex]
Hence, the slope is [tex]m=-\frac{1}{3}[/tex]
Equation of the line:
The equation of the line can be determined using the formula,
[tex]y-y_1=m(x-x_1)[/tex]
Substituting the point (-2,3) and the slope [tex]m=-\frac{1}{3}[/tex], in the above formula, we get,
[tex]y-3=-\frac{1}{3}(x+2)[/tex]
Simplifying, we get,
[tex]y-3=-\frac{1}{3}x-\frac{2}{3}[/tex]
[tex]y=-\frac{1}{3}x-\frac{2}{3}+3[/tex]
[tex]y=-\frac{1}{3}+\frac{7}{3}[/tex]
Therefore, the equation of the line is [tex]y=-\frac{1}{3}+\frac{7}{3}[/tex]