Respuesta :
Answer:
a) The mass flow rate of the refrigerant = 0.21194 kg/s
b) Heat Removal rate = 25.6695kw
c) COP = 2.682
Explanation:
Given that
Working fluid R-134a
Exit pressure of the evaporator p1 = 200kpa
Exit pressure of the compressor for upper cycle p6 = 1.2mPa
Isotropic efficiency of compressor ηc = 0.8
Mass flow rate of the refrigerant in lower cycle m1 = 0.15kg/s
Pressure in the upper cycle heat exchanger p5 = 0.5mPa
Pressure in the lower cycle heat exchanger p3 = 0.3 mPa
State Point 1
From the saturated refrigerant -134a, pressure table
P1 = 200kPa
h1 = hg = 244.46 kJ/kg
s1 = sg = 0.93773 kJ/kg.K
State point 2
P2 = 500kPa
S2 = S1 = 0.93773kJ/kg.K
From the super heated refrigerant -134a, we do an interpolation
[tex]h_2_s=259.30 + \frac{(263.46-259.30)(0.93773-0.9240)}{(0.9383-0.9240} \\h_2_s=263.294kJ/kg[/tex]
We can find the isotropic efficiency of the compressor
ηc= [tex]\frac{h_2_s-h_1}{h_2-h_1\\}\\0.8=\frac{263.294-244.46}{h_2-244.46} \\h_2=268.0025kJ/kg\\[/tex]
At point 3
From the saturated refrigerant -134a pressure table
when P3 = 0.5mPa
h3 = hf = 73.33 kJ/kg
for throttling,
h4 = h3 = 73.33kJ/kg
State point 5
p5 = 0.4mPa
Using the saturated refrigerant -134a pressure table
h5 = hg = 255.55kJkG
[tex]S_5=S_g=0.9261kJ/kg.K[/tex]
At state point 6
P6 = 1200kPa
S6 = S5 = 0.92961 kJ/kg.K
From the saturated refrigerant -134a pressure table, we can proceed to use interpolation
[tex]h_6_s=278.27+\frac{289.64-278.27}{0.9614-0.9267}*(0.92691-0.9267)\\h_6_s=278.34kJ/kg[/tex]
and we have ηc=[tex]\frac{h_6_s-h_5}{h_6-h_5}; 0.8= \frac{278.34-255.55}{h_c-255.55}\\h_c=284.04kJ/kg\\h_c=h_f=117.77kJ/kg\\for throttling,\\h_8=h_7=117.77kJ/kg\\[/tex]
a)
The mass flow rate of the refrigerant through upper cycle can be calculated as
[tex]M_h=\frac{Ml(h_2-h_3)}{h_5-h_8} \\M_h=\frac{0.15*(268.0025-73.33)}{255.55-117.77}\\M_h= 0.21194kg/s[/tex]
b)
The rate of heat removal from the refrigerated space
θ[tex]_l[/tex]=[tex]M_l=(h_1-h_4)\\[/tex]
θ[tex]_l[/tex]=[tex]0.15*(244.46-73.33)\\[/tex]
θ[tex]_l[/tex]=[tex]25.6695kw[/tex]
c) The COP of this refrigerator
power input W(in) = [tex]M_h(h_6-h_5)+m_l(h_2-h_1)\\W_i_n=0.21194*(284.04-255.55)+0.15(268.0025-244.46)\\W_i_n=9.57kw[/tex]
The calculated power input is 9.57kw
The COP of the refrigeration system
COP=θ[tex]_l[/tex]/w(in)
COP=[tex]25.6695/9.57=2.68[/tex]