Answer:
Explanation:
Given :
Radius of circular loop [tex]r = 4 \times 10^{-2}[/tex] m
Initial magnetic field [tex]B_{1} = 0.064[/tex] T
Final magnetic field [tex]B_{2} = 0.043[/tex] T
Difference of magnetic field [tex]\Delta B = B_{1} - B_{2} = 0.021[/tex]
Time interval [tex]\Delta t = 0.46[/tex] sec.
According to the theory of electromagnetic induction,
Average emf = [tex]\frac{- \Delta \phi}{\Delta t }[/tex]
Where [tex]\Delta \phi =[/tex] magnetic flux = [tex]\Delta BA[/tex]
Where [tex]A =[/tex] area of loop = [tex]\pi r^{2}[/tex]
Average emf = [tex]- \frac{0.021 \times \pi \times 16 \times 10^{-4} }{0.46}[/tex]
Magnitude of average emf = [tex]2.29 \times 10^{-4} = 0.229[/tex] mV
Thus, the magnitude of average induced emf = 0.229 mV