Energy from the Sun arrives at the top of the Earth's atmosphere with an intensity of 1.30 kW/m2. How long does it take for 1.97 109 J of energy to arrive on an area of 1.00 m2? This is the average monthly electrical energy consumption of a family of four in the United States.

Respuesta :

Answer:

[tex]1.377\times 10^6s[/tex]

Explanation:

The energy arriving in a specific area is defined as the radiating power multiplied by time:

[tex]E=PT[/tex]

#The radiating power delivered to a specific area equals the intensity per square unit area multiplied by the area:

[tex]P=pA[/tex]

#Equating the two expressions, we have:

[tex]E=pAT[/tex]

#We then calculate the time it takes for the energy to be delivered:

[tex]T=\frac{E}{pA}\\\\=\frac{1.79\times 10^9J}{1.30\times 10^3\times 1.0}\\\\=1.377\times 10^6s[/tex]

Hence, it takes [tex]1.377\times 10^6s[/tex] for the energy to be delivered.