Answer: The percent ionization of [tex]CH_3NH_2[/tex] in a 0.050 M [tex]CH_3NH_2(aq)[/tex] solution is 8.9 %
Explanation:
[tex]CH_3NH_2+H_2O\rightarrow OH^-+CH_3NH_3^+[/tex]
cM 0 0
[tex]c-c\alpha[/tex] [tex]c\alpha[/tex] [tex]c\alpha[/tex]
So dissociation constant will be:
[tex]K_b=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]
Give c= concentration = 0.050 M and [tex]\alpha[/tex] = degree of ionisation = ?
[tex]K_b=4.4\times 10^{-4}[/tex]
Putting in the values we get:
[tex]4.4\times 10^{-4}=\frac{(0.050\times \alpha)^2}{(0.050-0.050\times \alpha)}[/tex]
[tex](\alpha)=0.089[/tex]
percent ionisation =[tex]0.089\times 100=8.9\%[/tex]