The equation of a circle is x2 + y2 + 6x + 4y + 10 = 1. What is this equation written in its standard form?
A) (x + 3)2 + (y + 2)2 = 4
B) (x + 6)2 + (y + 4)2 - 4
C) (x + 6)2 + (y + 4)2 = 10
D) (x + 3)2 + (y + 2)2 = 10

Respuesta :

Option A: [tex](x+3)^2+(y+2)^2=4[/tex] is the equation of the circle

Explanation:

The equation of the circle is [tex]x^{2} +y^2+6x+4y+10=1[/tex]

We need to write the equation of the circle in standard form.

Let us subtract 10 from both sides of the equation.

Thus, we have,

[tex]x^{2} +y^2+6x+4y=-9[/tex]

Grouping the terms,we have,

[tex](x^{2} +6x)+(y^2+4y)=-9[/tex]

Now, we shall complete the square, let us add and subtract the equation by 9 to write the term [tex]\left(x^{2}+6 x\right)[/tex] in the form of [tex](a+b)^2[/tex]

Thus, we have,

[tex](x^{2} +6x+9-9)+(y^2+4y)=-9[/tex]

Simplifying, we get,

[tex](x^{2} +6x+9)+(y^2+4y)=-9+9[/tex]

       [tex](x+3)^2+(y^2+4y)=0[/tex]

Similarly, we shall complete the square for the term [tex]\left(y^{2}+4 y\right)[/tex] in the form of [tex](a+b)^2[/tex]

Thus, we have,

[tex](x+3)^2+(y^2+4y+4-4)=0[/tex]

Simplifying, we get,

[tex](x+3)^2+(y^2+4y+4)=4[/tex]

       [tex](x+3)^2+(y+2)^2=4[/tex]

Thus, the equation of the circle in standard form is [tex](x+3)^2+(y+2)^2=4[/tex]

Hence, Option A is the correct answer.