[tex]y=2x^2+8x-9\\D=b^2-4ac\\D=64-4(2)(-9)\\D=64+72 > 0[/tex]
There are 2 roots so the only way to complete the square is,
[tex]y=2x^2+8x-9\\y=2[(x^2+4x)]-9\\y=2[(x^2+4x+4)-4]-9\\y=2[(x+2)^2-4]-9\\y=2(x+2)^2-8-9\\y=2(x+2)^2-17[/tex]
Just factor 2 out of 2x^2+8x (just ignore the -9) then find the number that will make the terms be able to complete the square.
then complete the square and multiply 2 inside the brackets.
subtraction as you already get the vertex form and know how to complete the square.
Vertex Form: [tex]y=2(x+2)^2-17[/tex]