Respuesta :
Answer:
a) [tex]n = 1000\,users[/tex], b)[tex]\Delta t_{min} = \frac{1}{30}\,h[/tex], [tex]\Delta t_{max} = \frac{\sqrt{2} }{30}\,h[/tex], [tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h[/tex], c) [tex]n = 10000000\,users[/tex], [tex]\Delta t_{min} = \frac{1}{3000}\,h[/tex], [tex]\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h[/tex], [tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h[/tex]
Explanation:
a) The total number of users that can be accomodated in the system is:
[tex]n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )[/tex]
[tex]n = 1000\,users[/tex]
b) The length of the side of each cell is:
[tex]l = \sqrt{1\,km^{2}}[/tex]
[tex]l = 1\,km[/tex]
Minimum time for traversing a cell is:
[tex]\Delta t_{min} = \frac{l}{v}[/tex]
[tex]\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }[/tex]
[tex]\Delta t_{min} = \frac{1}{30}\,h[/tex]
The maximum time for traversing a cell is:
[tex]\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}[/tex]
[tex]\Delta t_{max} = \frac{\sqrt{2} }{30}\,h[/tex]
The approximate time is giving by the average of minimum and maximum times:
[tex]\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}[/tex]
[tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h[/tex]
c) The total number of users that can be accomodated in the system is:
[tex]n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )[/tex]
[tex]n = 10000000\,users[/tex]
The length of each side of the cell is:
[tex]l = \sqrt{100\,m^{2}}[/tex]
[tex]l = 10\,m[/tex]
Minimum time for traversing a cell is:
[tex]\Delta t_{min} = \frac{l}{v}[/tex]
[tex]\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }[/tex]
[tex]\Delta t_{min} = \frac{1}{3000}\,h[/tex]
The maximum time for traversing a cell is:
[tex]\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}[/tex]
[tex]\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h[/tex]
The approximate time is giving by the average of minimum and maximum times:
[tex]\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}[/tex]
[tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h[/tex]