1. Consider a city of 10 square kilometers. A macro cellular system design divides the city up into square cells of 1 square kilometer, where each cell can accommodate 100 users. Find the total number of users that can be accommodated in the system and the length of time it takes a mobile user to traverse a cell (approximate time needed for a handover) when moving at 30 Km/hour. If the cell size is reduced to 100 square meters and everything in the system scales so that 100 users can be accommodated in these smaller cells, and the total number of users the system can accommodate and the length of time it takes to traverse a cell.

Respuesta :

Answer:

a) [tex]n = 1000\,users[/tex], b)[tex]\Delta t_{min} = \frac{1}{30}\,h[/tex], [tex]\Delta t_{max} = \frac{\sqrt{2} }{30}\,h[/tex], [tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h[/tex], c) [tex]n = 10000000\,users[/tex], [tex]\Delta t_{min} = \frac{1}{3000}\,h[/tex], [tex]\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h[/tex], [tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h[/tex]

Explanation:

a) The total number of users that can be accomodated in the system is:

[tex]n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )[/tex]

[tex]n = 1000\,users[/tex]

b) The length of the side of each cell is:

[tex]l = \sqrt{1\,km^{2}}[/tex]

[tex]l = 1\,km[/tex]

Minimum time for traversing a cell is:

[tex]\Delta t_{min} = \frac{l}{v}[/tex]

[tex]\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }[/tex]

[tex]\Delta t_{min} = \frac{1}{30}\,h[/tex]

The maximum time for traversing a cell is:

[tex]\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}[/tex]

[tex]\Delta t_{max} = \frac{\sqrt{2} }{30}\,h[/tex]

The approximate time is giving by the average of minimum and maximum times:

[tex]\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}[/tex]

[tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h[/tex]

c) The total number of users that can be accomodated in the system is:

[tex]n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )[/tex]

[tex]n = 10000000\,users[/tex]

The length of each side of the cell is:

[tex]l = \sqrt{100\,m^{2}}[/tex]

[tex]l = 10\,m[/tex]

Minimum time for traversing a cell is:

[tex]\Delta t_{min} = \frac{l}{v}[/tex]

[tex]\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }[/tex]

[tex]\Delta t_{min} = \frac{1}{3000}\,h[/tex]

The maximum time for traversing a cell is:

[tex]\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}[/tex]

[tex]\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h[/tex]

The approximate time is giving by the average of minimum and maximum times:

[tex]\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}[/tex]

[tex]\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h[/tex]