An electron in the beam of a cathode-ray tube is accelerated by a potential difference of 2.00 kV. Then it passes through a region of transverse magnetic field, where it moves in a circular arc with a radius of 0.180 m. What is the magnitude of the field?

Respuesta :

Answer: The magnitude of the field is 8.384×10^-4 T

Explanation: Please see the attachments below

Ver imagen Abdulazeez10
Ver imagen Abdulazeez10
Ver imagen Abdulazeez10

The magnitude of the magnetic field is [tex]8.34 \times 10^{-4} T[/tex].

Given, electron is accelerated by a potential difference of 2 KV.

Radius of circular arc is 0.18 m.

Equation of magnetic force, F = q v B.

But here electron is moving in a circular arc so there will be a centripetal force.

hence , centripetal force = magnetic force

[tex]\frac{mv^{2} }{r}[/tex] [tex]= q v B[/tex]

On resolving the above equation ,

[tex]r =\frac{mv}{qB}[/tex].........(equation 1) here q is the charge of the electron.

We know that, Velocity v acquired  by the electron and accelerating  potential V are related by,

[tex]\frac{1}{2} mv^{2}= e V[/tex]  where e and m are charge and mass of the electron.

[tex]v^{2} =\frac{2eV}{m}[/tex]

[tex]v=\sqrt[2]{\frac{2eV}{m} }[/tex]..........(equation 2)

Putting the value of v from equation 2 in equation 1, we get  [tex]r =\frac{m\sqrt{\frac{2ev}{m} } }{qB}[/tex]

On solving we get,  [tex]B = \frac{\sqrt{2emV} }{er}[/tex]

[tex]B = \sqrt{ \frac{2mV}{er^{2} }[/tex]

putting the values of V, m, e and r in above equation

[tex]B = \sqrt{\frac{2\times 9\times 10^{-31}\times 2\times 10^{3} }{1.6\times 10^{-19}\times 0.18^{2} } }[/tex]

On further solving the above equation we get [tex]B = 8.34 \times 10^{-4} T[/tex]

therefore the magnitude of the magnetic field is [tex]8.34 \times 10^{-4} T[/tex].

For more details on Centripetal force follow the link below:

https://brainly.com/question/10596517

 

ACCESS MORE