Respuesta :
Answer: The magnitude of the field is 8.384×10^-4 T
Explanation: Please see the attachments below
![Ver imagen Abdulazeez10](https://us-static.z-dn.net/files/dab/91bad7e79e6d2b5cd53930e0bad328e6.jpg)
![Ver imagen Abdulazeez10](https://us-static.z-dn.net/files/d97/b8c91aff635c07750fdfcabb86677afb.jpg)
![Ver imagen Abdulazeez10](https://us-static.z-dn.net/files/dcf/f1eca9ab453d6f8ec166e7e7093644f2.jpg)
The magnitude of the magnetic field is [tex]8.34 \times 10^{-4} T[/tex].
Given, electron is accelerated by a potential difference of 2 KV.
Radius of circular arc is 0.18 m.
Equation of magnetic force, F = q v B.
But here electron is moving in a circular arc so there will be a centripetal force.
hence , centripetal force = magnetic force
[tex]\frac{mv^{2} }{r}[/tex] [tex]= q v B[/tex]
On resolving the above equation ,
[tex]r =\frac{mv}{qB}[/tex].........(equation 1) here q is the charge of the electron.
We know that, Velocity v acquired by the electron and accelerating potential V are related by,
[tex]\frac{1}{2} mv^{2}= e V[/tex] where e and m are charge and mass of the electron.
[tex]v^{2} =\frac{2eV}{m}[/tex]
[tex]v=\sqrt[2]{\frac{2eV}{m} }[/tex]..........(equation 2)
Putting the value of v from equation 2 in equation 1, we get [tex]r =\frac{m\sqrt{\frac{2ev}{m} } }{qB}[/tex]
On solving we get, [tex]B = \frac{\sqrt{2emV} }{er}[/tex]
[tex]B = \sqrt{ \frac{2mV}{er^{2} }[/tex]
putting the values of V, m, e and r in above equation
[tex]B = \sqrt{\frac{2\times 9\times 10^{-31}\times 2\times 10^{3} }{1.6\times 10^{-19}\times 0.18^{2} } }[/tex]
On further solving the above equation we get [tex]B = 8.34 \times 10^{-4} T[/tex]
therefore the magnitude of the magnetic field is [tex]8.34 \times 10^{-4} T[/tex].
For more details on Centripetal force follow the link below:
https://brainly.com/question/10596517