Geometry- Finding Angles
Can anyone help with this?
![Geometry Finding Angles Can anyone help with this class=](https://us-static.z-dn.net/files/d09/b870b7cc5c50798b5ccd6ef25a560bed.png)
Answer:
[tex]m\angle 1=45^o[/tex]
[tex]m\angle 2=75^o[/tex]
[tex]m\angle 3=35^o[/tex]
[tex]m\angle 4=70^o[/tex]
[tex]m\angle 5=75^o[/tex]
[tex]m\angle 6=55^o[/tex]
[tex]m\angle 7=50^o[/tex]
[tex]m\angle 8=25^o[/tex]
[tex]m\angle 9=35^o[/tex]
[tex]m\angle 10=70^o[/tex]
[tex]m\angle 11=50^o[/tex]
[tex]m\angle 12=25^o[/tex]
[tex]m\angle 13=70^o[/tex]
[tex]m\angle 14=50^o[/tex]
[tex]m\angle 15=60^o[/tex]
[tex]m\angle 16=85^o[/tex]
[tex]m\angle 17=95^o[/tex]
[tex]m\angle 18=85^o[/tex]
[tex]m\angle 19=95^o[/tex]
Step-by-step explanation:
step 1
Find the measure of arc FG
we know that
[tex]arc\ GB+arc\ BD+arc\ DF+arc\ FG=360^o[/tex] ---> by complete circle
substitute the given values
[tex]50^o+100^o+140^o+arc\ FG=360^o[/tex]
[tex]arc\ FG=360^o-290^o=70^o[/tex]
step 2
Find the measure of angle 9
we know that
The inscribed angle is half that of the arc comprising
so
[tex]m\angle 9=\frac{1}{2}[arc\ GF][/tex]
we have
[tex]arc\ FG=70^o[/tex]
substitute
[tex]m\angle 9=\frac{1}{2}[70^o]=35^o[/tex]
step 3
Find the measure of angle 11
we know that
The inscribed angle is half that of the arc comprising
so
[tex]m\angle 11=\frac{1}{2}[arc\ BD][/tex]
we have
[tex]arc\ BD=100^o[/tex]
[tex]m\angle 11=\frac{1}{2}[100^o]=50^o[/tex]
step 4
Find the measure of angle 12
we know that
The inscribed angle is half that of the arc comprising
so
[tex]m\angle 12=\frac{1}{2}[arc\ BG][/tex]
we have
[tex]arc\ BG=50^o[/tex]
[tex]m\angle 12=\frac{1}{2}[50^o]=25^o[/tex]
step 5
Find the measure of angle 13
[tex]m\angle 13=\frac{1}{2}[arc\ DF][/tex]
we have
[tex]arc\ DF=140^o[/tex]
[tex]m\angle 13=\frac{1}{2}[140^o]=70^o[/tex]
step 6
Find the measure of angle 4
we know that
[tex]m\angle 4=m\angle 13[/tex] ---> the inscribed angle has the same arc comprising DF
therefore
[tex]m\angle 4=70^o[/tex]
step 7
Find the measure of angle 14
we know that
[tex]m\angle 14=m\angle 11[/tex] ---> the inscribed angle has the same arc comprising BD
therefore
[tex]m\angle 14=50^o[/tex]
step 8
Find the measure of angle 15
we know that
[tex]m\angle 13+m\angle 14+m\angle 15=180^o[/tex] ---> by form a straight line
substitute the given values
[tex]70^o+50^o+m\angle 15=180^o[/tex]
[tex]m\angle 15=180^o-120^o=60^o[/tex]
step 9
Find the measure of angle 16
Remember that the sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]m\angle 12+m\angle 13+m\angle 16=180^o[/tex]
substitute given values
[tex]25^o+70^o+m\angle 16=180^o[/tex]
[tex]m\angle 16=180^o-95^o=85^o[/tex]
step 10
Find the measure of angle 17
we know that
[tex]m\angle 16+m\angle 17=180^o[/tex] ---> by form a straight line
substitute the given value
[tex]85^o+m\angle 17=180^o[/tex]
[tex]m\angle 17=180^o-85^o=95^o[/tex]
step 11
Find the measure of angle 18
we know that
[tex]m\angle 18=m\angle 16[/tex] ---> by vertical angles
therefore
[tex]m\angle 18=85^o[/tex]
step 12
Find the measure of angle 19
we know that
[tex]m\angle 19=m\angle 17[/tex] ---> by vertical angles
therefore
[tex]m\angle 19=95^o[/tex]
step 13
Find the measure of angle 1
we know that
The measurement of the external angle is the half-difference of the arches that comprise
[tex]m\angle 1=\frac{1}{2}[arc\ DF-arc\ GB][/tex]
substitute
[tex]m\angle 1=\frac{1}{2}[140^o-50^o]=45^o[/tex]
step 14
Find the measure of angle 3
we know that
[tex]m\angle 3=m\angle 9[/tex] ---> the inscribed angle has the same arc comprising BD
therefore
[tex]m\angle 3=35^o[/tex]
step 15
Find the measure of angle 2
we know that
[tex]m\angle 2+m\angle 3+m\angle 4=180^o[/tex] ---> by form a straight line
substitute the given values
[tex]m\angle 2+35^o+70^o=180^o[/tex]
[tex]m\angle 2=180^o-105^o=75^o[/tex]
step 16
Find the measure of angle 5
we know that
[tex]m\angle 5=m\angle 2[/tex] ---> by vertical angles
therefore
[tex]m\angle 5=75^o[/tex]
step 17
Find the measure of angle 6
we know that
The measurement of the external angle is the half-difference of the arches that comprise
[tex]m\angle 6=\frac{1}{2}[arc\ DFG-arc\ BD][/tex]
substitute
[tex]m\angle 6=\frac{1}{2}[210^o-100^o]=55^o[/tex]
step 18
Find the measure of angle 8
we know that
[tex]m\angle 8=m\angle 12[/tex] ---> the inscribed angle has the same arc comprising GB
therefore
[tex]m\angle 8=25^o[/tex]
step 19
Find the measure of angle 7
Remember that the sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]m\angle 5+m\angle 6+m\angle 7=180^o[/tex]
substitute
[tex]75^o+55^o+m\angle 7=180^o[/tex]
[tex]m\angle 7=180^o-130^o=50^o[/tex]
step 20
Find the measure of angle 10
we know that
[tex]m\angle 7+m\angle 8+m\angle 9+m\angle 10=180^o[/tex] ---> by form a straight line
substitute
[tex]50^o+25^o+35^o+m\angle 10=180^o[/tex]
[tex]m\angle 10=180^o-110^o=70^o[/tex]