[tex]Tan2x =\frac{-24}{7}[/tex]
Step-by-step explanation:
Here we have , cos x = -4/5 ( corrected as given -45 which is not possible ) ,
180° < x < 270° i.e. in third quadrant . We need to find tan(2x) . Let's find out:
⇒ [tex]Tan\alpha = \frac{sin\alpha }{cos\alpha }[/tex]
⇒ [tex]Tan\alpha = \frac{\sqrt{1-(cos\alpha)^2} }{cos\alpha }[/tex]
⇒ [tex]Tan\alpha = \frac{\sqrt{1-(\frac{-4}{5})^2} }{\frac{-4}{5} }[/tex]
⇒ [tex]Tan\alpha = \frac{-5}{4}\sqrt{1-(\frac{16}{25}) }[/tex]
⇒ [tex]Tan\alpha = \frac{-5}{4}\sqrt{(\frac{25-16}{25}) }[/tex]
⇒ [tex]Tan\alpha = \frac{-5}{4}(\frac{3}{5}) }[/tex]
⇒ [tex]Tan\alpha = \frac{-3}{4}[/tex] , since in third quadrant . [tex]Tan\alpha = \frac{-3}{4}[/tex] remains same .
Now , [tex]Tan2x = \frac{2tanx}{1-(tanx)^{2}}}[/tex]
⇒ [tex]Tan2x = \frac{2tanx}{1-(tanx)^{2}}}[/tex]
⇒ [tex]Tan2x = \frac{2(\frac{-3}{4})}{1-(\frac{-3}{4})^{2}}}[/tex]
⇒ [tex]Tan2x = \frac{-3}{2}(\frac{16}{7})[/tex]
⇒ [tex]Tan2x =\frac{-24}{7}[/tex]
Therefore, [tex]Tan2x =\frac{-24}{7}[/tex] .