Respuesta :

[tex]Tan2x =\frac{-24}{7}[/tex]

Step-by-step explanation:

Here we have , cos x = -4/5 ( corrected as given -45 which is not possible ) ,

180° < x < 270° i.e. in third quadrant  . We need to find tan⁡(2x) . Let's find out:

⇒ [tex]Tan\alpha = \frac{sin\alpha }{cos\alpha }[/tex]

⇒ [tex]Tan\alpha = \frac{\sqrt{1-(cos\alpha)^2} }{cos\alpha }[/tex]

⇒ [tex]Tan\alpha = \frac{\sqrt{1-(\frac{-4}{5})^2} }{\frac{-4}{5} }[/tex]

⇒ [tex]Tan\alpha = \frac{-5}{4}\sqrt{1-(\frac{16}{25}) }[/tex]

⇒ [tex]Tan\alpha = \frac{-5}{4}\sqrt{(\frac{25-16}{25}) }[/tex]

⇒ [tex]Tan\alpha = \frac{-5}{4}(\frac{3}{5}) }[/tex]

⇒ [tex]Tan\alpha = \frac{-3}{4}[/tex] , since in third quadrant . [tex]Tan\alpha = \frac{-3}{4}[/tex] remains same .

Now , [tex]Tan2x = \frac{2tanx}{1-(tanx)^{2}}}[/tex]

⇒ [tex]Tan2x = \frac{2tanx}{1-(tanx)^{2}}}[/tex]

⇒ [tex]Tan2x = \frac{2(\frac{-3}{4})}{1-(\frac{-3}{4})^{2}}}[/tex]

⇒ [tex]Tan2x = \frac{-3}{2}(\frac{16}{7})[/tex]

⇒ [tex]Tan2x =\frac{-24}{7}[/tex]

Therefore, [tex]Tan2x =\frac{-24}{7}[/tex] .

ACCESS MORE