rove the sum of two rational numbers is rational where a, b, c, and d are integers and b and d cannot be zero.


Steps Reasons
1. a over b plus c over d Given
2. Multiply to get a common denominator
3. ad plus cb all over bd Simplify


Fill in the missing step in the proof.

Respuesta :

Answer:

[tex]\frac{ad+bc}{bd}[/tex]

Step-by-step explanation:

[tex]Greetings![/tex]

[tex]I'm~Isabelle~Williams~and~I~will~be~answering~your~question![/tex]

[tex]Let,\frac{a}{b} ~and ~\frac{c}{d}~be~two~rational~numbers, ~where~ b ~and~ d ~are~ not~ zero ~and~ a, ~b, ~c ~and \\~d ~are~ integers.[/tex]

[tex]1.~Given:[/tex]

[tex]\frac{a}{b} +\frac{c}{d}[/tex]

[tex]2.~Now,~we~multiply~to~get~a~common~denominator:[/tex]

[tex]\frac{a}{b}+\frac{c}{d}=\frac{ad}{bd}+\frac{cb}{db}[/tex]

[tex]3.~Then~simplify:[/tex]

[tex]\frac{a}{b}+\frac{c}{d}=\frac{ad}{bd}+\frac{cb}{db}=\frac{ad+bc}{bd}[/tex]

[tex]4.~Since,b\neq 0,~d\neq 0,~then,~bd,~ad,~bc~and~ad+bc~are~integers~too.~So~the\\ fraction~will~be:[/tex]

[tex]\frac{ad+bc}{bd}[/tex]

[tex]Thus,~making~it~a~rational~number![/tex]

[tex]Hope~this~answer~helps!~and~have~an~amazing~day~ahead![/tex]

[tex]-Isabelle~Williams[/tex]

ACCESS MORE