Respuesta :

The equation of the line is [tex]y=-\frac{1}{4}x+\frac{15}{4}[/tex]

The y - intercept of the equation is [tex]\frac{15}{4}[/tex]

Explanation:

Given that the equation of the line is [tex]y=4 x+1[/tex] and the slope is [tex]m=-\frac{1}{4}[/tex]

Equation of the line:

The equation of the line can be determined using the formula,

[tex]y-y_1=m(x-x_1)[/tex]

Substituting the point (-1,4) and the slope [tex]m=-\frac{1}{4}[/tex] , we get,

[tex]y-4=-\frac{1}{4}(x+1)[/tex]

Simplifying, we get,

[tex]y-4=-\frac{1}{4}x-\frac{1}{4}[/tex]

     [tex]y=-\frac{1}{4}x-\frac{1}{4}+4[/tex]

     [tex]y=-\frac{1}{4}x+\frac{15}{4}[/tex]

Thus, the equation of the line is [tex]y=-\frac{1}{4}x+\frac{15}{4}[/tex]

y - intercept:

The y - intercept of the equation is value of y when x = 0

Hence, substituting x = 0 in the equation [tex]y=-\frac{1}{4}x+\frac{15}{4}[/tex], we get,

[tex]y=-\frac{1}{4}(0)+\frac{15}{4}[/tex]

[tex]y=\frac{15}{4}[/tex]

Thus, the y - intercept of the equation is [tex]\frac{15}{4}[/tex]

ACCESS MORE