Answer: The approximate equilibrium partial pressure of [tex]H_2S[/tex] is 3.92 atm
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.
The given balanced equilibrium reaction is,
[tex]2H_2S(g)\rightleftharpoons 2H_2(g)+S_2(g)[/tex]
[tex]K_p=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}[/tex]
[tex]1.5\times 10^{-5}=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}[/tex]
On reversing the reaction:
[tex]2H_2(g)+S_2(g)\rightleftharpoons 2H_2S(g)[/tex]
initial pressure 4.00atm 2.00 atm 0
eqm (4.00-2x)atm (2.00-x) atm 2x atm
[tex]K_p=\frac{[H_2S]^2}{[H_2]^2\times [S_2]}[/tex]
[tex]K_p'=\frac{1}{K_p}=0.67\times 10^5[/tex]
[tex]2H_2(g)+S_2(g)\rightleftharpoons 2H_2S(g)[/tex]
[tex]0.67\times 10^5=\frac{2x]^2}{[4.00-2x]^2\times [2.00-x]}[/tex]
[tex]x=1.96[/tex]
[tex][H_2S]=2x=2\times 1.96=3.92 atm[/tex]
Thus approximate equilibrium partial pressure of [tex]H_2S[/tex] is 3.92 atm