For the reaction 2 H2S(g) D 2 H2 (g) + S2 (g), Kp = 1.5 × 10−5 at 800.0°C. If the initial partial pressures of H2 and S2 in a closed container are 4.00 atm and 2.00 atm, respectively, what is the approximate equilibrium partial pressure of H2S?

Respuesta :

Answer: The approximate equilibrium partial pressure of [tex]H_2S[/tex] is 3.92  atm

Explanation:

Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.

The given balanced equilibrium reaction is,

      [tex]2H_2S(g)\rightleftharpoons 2H_2(g)+S_2(g)[/tex]

[tex]K_p=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}[/tex]

[tex]1.5\times 10^{-5}=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}[/tex]

On reversing the reaction:

     [tex]2H_2(g)+S_2(g)\rightleftharpoons 2H_2S(g)[/tex]

initial pressure  4.00atm    2.00 atm       0

eqm          (4.00-2x)atm      (2.00-x) atm      2x atm

[tex]K_p=\frac{[H_2S]^2}{[H_2]^2\times [S_2]}[/tex]

[tex]K_p'=\frac{1}{K_p}=0.67\times 10^5[/tex]

[tex]2H_2(g)+S_2(g)\rightleftharpoons 2H_2S(g)[/tex]

[tex]0.67\times 10^5=\frac{2x]^2}{[4.00-2x]^2\times [2.00-x]}[/tex]

[tex]x=1.96[/tex]

[tex][H_2S]=2x=2\times 1.96=3.92 atm[/tex]

Thus approximate equilibrium partial pressure of [tex]H_2S[/tex] is 3.92 atm

ACCESS MORE