Respuesta :
Answer:
(a)
[tex]r'(\frac \pi 4) =(0.-4)[/tex]
(b)
r'(5)= (10,75)
(c)
[tex]r'(-5) =4 e^{-20}\hat i-5e^{25}\hat j+\hat k[/tex]
Step-by-step explanation:
(a)
Give that,the position vector is
r(t) = (cos 4t, sin 4t)
Differentiating with respect to t
r'(t) = (-4sin 4t, 4 cos 4t) [[tex]\frac{d}{dt} cos mt = -m \ sin \ mt[/tex] and [tex]\frac{d}{dt} sin mt = m \ cos \ mt[/tex]]
To find the [tex]r'(\frac\pi 4)[/tex], we put [tex]t=\frac \pi4[/tex]
[tex]r'(\frac\pi 4) = (-4sin (4.\frac \pi 4), 4 cos (4.\frac \pi 4))[/tex]
=(0, -4)
(b)
Give that,the position vector is
r(t) = (t²,t³)
Differentiating with respect to t
r'(t) = (2t, 3t²)
To find r'(5) , we put t=5
r'(5) = (2.5,3.5²)
= (10,75)
(c)
Given position vector is
[tex]r(t) = e^{4t}\hat i+e^{-5t}\hat j+t\hat k[/tex]
Differentiating with respect to t
[tex]r'(t) =4 e^{4t}\hat i+(-5)e^{-5t}\hat j+\hat k[/tex]
[tex]\Rightarrow r'(t) =4 e^{4t}\hat i-5e^{-5t}\hat j+\hat k[/tex]
To find r'(-5) , we put t= - 5 in the above equation
[tex]r'(-5) =4 e^{4.(-5)}\hat i-5e^{-5.(-5)}\hat j+\hat k[/tex]
[tex]\Rightarrow r'(-5) =4 e^{-20}\hat i-5e^{25}\hat j+\hat k[/tex]