To accumulate 8000 at the end of 3n years, deposits of 98 are made at the end of each of the first n years and 196 at the end of each of the next 2n years. The annual effective rate of interest is i. You are given (1 ) 2.0 n + = i .

Respuesta :

Answer: [tex]i = 12.25%[/tex]

Step-by-step explanation:

The accumulative value for n years will be:

[tex]98*((n+i)^{n}-1)/i[/tex]

[tex]=98*((2-1)/i[/tex]

[tex]=98*(1)/1[/tex]

=[tex]\frac{98}{i}[/tex]

The accumulative value for 2n years will be:

[tex]((1+i)^{2n}-1)/i[/tex]

=4* 98/i

=[tex]\frac{392}{i}[/tex]              .....called it equation 1

The accumulative value for 3n years will be:

[tex]196*((n+i)^{n}-1)/i[/tex]

[tex]=196*((4-1)/i[/tex]

=[tex]\frac{196*3}{i}[/tex]

=[tex]\frac{588}{i}[/tex]                   ....called it equation 2

Now sum equation 1 and equation 2 together

[tex]\frac{392}{i}[/tex]+[tex]\frac{588}{i}[/tex]=8000

[tex]980i=8000[/tex]

divide both side by 980 to get i

i = [tex]\frac{8000}{980}[/tex]

[tex]i = 12.25%[/tex]

ACCESS MORE