Answer: [tex]i = 12.25%[/tex]
Step-by-step explanation:
The accumulative value for n years will be:
[tex]98*((n+i)^{n}-1)/i[/tex]
[tex]=98*((2-1)/i[/tex]
[tex]=98*(1)/1[/tex]
=[tex]\frac{98}{i}[/tex]
The accumulative value for 2n years will be:
[tex]((1+i)^{2n}-1)/i[/tex]
=4* 98/i
=[tex]\frac{392}{i}[/tex] .....called it equation 1
The accumulative value for 3n years will be:
[tex]196*((n+i)^{n}-1)/i[/tex]
[tex]=196*((4-1)/i[/tex]
=[tex]\frac{196*3}{i}[/tex]
=[tex]\frac{588}{i}[/tex] ....called it equation 2
Now sum equation 1 and equation 2 together
[tex]\frac{392}{i}[/tex]+[tex]\frac{588}{i}[/tex]=8000
[tex]980i=8000[/tex]
divide both side by 980 to get i
i = [tex]\frac{8000}{980}[/tex]
[tex]i = 12.25%[/tex]