Three parcels weigh 2 pounds two parcels weigh the same the lightest weight is 5/8 pound lighter than the heaviest weight how much do each of the parcels weigh

Respuesta :

Answer:

Two parcels weigh [tex]\frac{11}{12}[/tex] lb and the heaviest parcel weigh [tex]1\frac{1}{12}[/tex] lb.

Step-by-step explanation:

Let the weight of two parcels which are equal in weight = x lb

and the weight of the heaviest weight parcel = y lb

From the statement of the question,

"Three parcels weigh 2 pounds".

x + x + y = 2

2x + y = 2 -------(1)

"The lightest wight is [tex]\frac{5}{8}[/tex] pound lighter then the heaviest".

[tex]x=y-\frac{5}{8}[/tex]

[tex]x-y=-\frac{5}{8}[/tex] --------(2)

Now we add equation (1) and equation (2)

(2x + y) + (x - y) = 2 - [tex]\frac{5}{8}[/tex]

3x = [tex]\frac{16-5}{8}[/tex]

3x = [tex]\frac{11}{8}[/tex]

x = [tex]\frac{11}{24}[/tex] lb

from equation (1),

[tex]2(\frac{11}{24})+y=2[/tex]

y = 2 - [tex]\frac{11}{12}[/tex]

y = [tex]\frac{13}{12}[/tex] lb ≈ [tex]1\frac{1}{12}[/tex]

Therefore, two parcels weigh [tex]\frac{11}{12}[/tex] lb and the heaviest parcel weigh [tex]1\frac{1}{12}[/tex] lb.