Answer:
Two parcels weigh [tex]\frac{11}{12}[/tex] lb and the heaviest parcel weigh [tex]1\frac{1}{12}[/tex] lb.
Step-by-step explanation:
Let the weight of two parcels which are equal in weight = x lb
and the weight of the heaviest weight parcel = y lb
From the statement of the question,
"Three parcels weigh 2 pounds".
x + x + y = 2
2x + y = 2 -------(1)
"The lightest wight is [tex]\frac{5}{8}[/tex] pound lighter then the heaviest".
[tex]x=y-\frac{5}{8}[/tex]
[tex]x-y=-\frac{5}{8}[/tex] --------(2)
Now we add equation (1) and equation (2)
(2x + y) + (x - y) = 2 - [tex]\frac{5}{8}[/tex]
3x = [tex]\frac{16-5}{8}[/tex]
3x = [tex]\frac{11}{8}[/tex]
x = [tex]\frac{11}{24}[/tex] lb
from equation (1),
[tex]2(\frac{11}{24})+y=2[/tex]
y = 2 - [tex]\frac{11}{12}[/tex]
y = [tex]\frac{13}{12}[/tex] lb ≈ [tex]1\frac{1}{12}[/tex]
Therefore, two parcels weigh [tex]\frac{11}{12}[/tex] lb and the heaviest parcel weigh [tex]1\frac{1}{12}[/tex] lb.