4. Rhombus QRST has diagonals intersecting at W. Point U is located on side QR and point V on diagonal RT
such that UV is perpendicular to QR.

Prove: QW•UR =WT•UV

Respuesta :

Answer:

Given:

In Rhombus QRST, diagonals QS and RT intersect at W and U∈QR and point V∈RT  such that UV⊥QR. (shown in below diagram)

To prove: QW•UR =WT•UV

Proof:

In a rhombus diagonals bisect perpendicularly,

Thus, in QRST

QW≅WS, WR ≅ WT and m∠QWR=m∠QWT=m∠RWS=m∠TWS=90°.

In triangles QWR and UVR,

[tex]m\angle QWR=m\angle VUR[/tex]              (Right angles)

[tex]m\angle WRQ=m\angle VRU[/tex]              (Common angles)

By AA similarity postulate,

[tex]\triangle QWR\sim \triangle VUR[/tex]

The corresponding sides in similar triangles are in same proportion,

[tex]\implies \frac{QW}{VU}=\frac{WR}{UR}[/tex]

[tex]QW\times UR=WR\times VU[/tex]

[tex]QW\times UR=WT\times UV[/tex]                 (∵ WR ≅ WT )

Hence, proved.

Ver imagen slicergiza
ACCESS MORE