Answer:
Given:
In Rhombus QRST, diagonals QS and RT intersect at W and U∈QR and point V∈RT such that UV⊥QR. (shown in below diagram)
To prove: QW•UR =WT•UV
Proof:
In a rhombus diagonals bisect perpendicularly,
Thus, in QRST
QW≅WS, WR ≅ WT and m∠QWR=m∠QWT=m∠RWS=m∠TWS=90°.
In triangles QWR and UVR,
[tex]m\angle QWR=m\angle VUR[/tex] (Right angles)
[tex]m\angle WRQ=m\angle VRU[/tex] (Common angles)
By AA similarity postulate,
[tex]\triangle QWR\sim \triangle VUR[/tex]
The corresponding sides in similar triangles are in same proportion,
[tex]\implies \frac{QW}{VU}=\frac{WR}{UR}[/tex]
[tex]QW\times UR=WR\times VU[/tex]
[tex]QW\times UR=WT\times UV[/tex] (∵ WR ≅ WT )
Hence, proved.