Answer:
probability of selecting 3 green marbles, 1 red marble, and 1 blue marbles
[tex]P(E) =\frac{8}{126} = 0.0634[/tex]
Step-by-step explanation:
Given data urn containing '9' marbles
given red marbles = 2
green marbles =3
blue marbles = 4
Five marbles can be selected at a time from '9' marbles in [tex]9_{C_{5} }[/tex] ways
by using formula [tex]n_{C_{r} }=\frac{n!}{(n-r)!r!}[/tex]
[tex]9_{C_{5} }=\frac{9!}{(9-5)!5!} = \frac{9X8X7X6X5!}{4!5!}[/tex]
After simplification , we get [tex]9_{C_{5} } = 126[/tex]
total number of ways n(S) = 126
The probability of selecting '3' green marbles ,one red marble and one blue marble with replacement.
let ' E' be the event of selecting '3' green marbles ,one red marble and one blue marble with replacement.
n(E) = [tex]3_{C_{3} } X2_{C_{1} }X 4_{C_{1} }[/tex] ways
The required probability [tex]P(E) = \frac{n(E)}{n(S)}[/tex]
[tex]p(E) = \frac{3_{C_{3} } X2_{C_{1} }X 4_{C_{1} }}{9_{C_{5} } }[/tex]
on simplification , we get
[tex]P(E) = \frac{1X2X4}{126} =\frac{8}{126}[/tex]
[tex]P(E) =\frac{8}{126} = 0.0634[/tex]