Answer:
99% Confidence interval: (0.0375,0.2099)
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 97
Number of left handed, x = 12
[tex]\hat{p} = \dfrac{x}{n} = \dfrac{12}{97} = 0.1237[/tex]
99% Confidence interval:
[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.01} = 2.58[/tex]
Putting the values, we get:
[tex]0.1237\pm 2.58(\sqrt{\dfrac{0.1237(1-0.1237)}{97}}) = 0.1237\pm 0.0862\\\\=(0.0375,0.2099)[/tex]
The required confidence interval is (0.0375,0.2099).