Respuesta :
Answer:
50°
Explanation:
The tension in the rope fastened to the ceiling has horizontal component 59cosθ and its vertical component is 59sinθ. For equilibrium,
59cosθ = 38 N (the tension in the rope attached to the wall) (1)and
59sinθ = Mg (the weight of the block of mass) (2)
Dividing (2) by (1)
59sinθ/59cosθ = Mg/38
tanθ = Mg/38
θ = tan⁻¹(Mg/38)
Also squaring (1) and (2) and adding
(59cosθ)² = 38² N
(59sinθ)² = (Mg)²
(59cosθ)² + (59sinθ)² = 38² + (Mg)²
59²((cosθ)² + (sinθ)²) = 38² + (Mg)² . Since (cosθ)² + (sinθ)² = 1
59² = 38² + (Mg)²
Mg = √(59² - 38²) = √(3481 - 1444) = √2037 = 45.13 N
θ = tan⁻¹(Mg/38) = tan⁻¹(45.13/38) = tan⁻¹(1.1877) = 49.9° ≅ 50°
The angle of the theta along with the ceiling would be [tex]50[/tex]°
Given that,
The tension of the rope linked to the wall [tex]= 38N[/tex]
The tension of the rope linked to the ceiling [tex]= 59N[/tex]
Since the tension of the rope linked to the wall is horizontal, it will be [tex]59cos[/tex]θ while vertical element.
In order to establish the equilibrium,
[tex]59cos[/tex]θ [tex]= 38N[/tex] ...(i)
[tex]59sin[/tex]θ [tex]= Mg[/tex] ...(ii)
Now by solving through division of [tex](ii)[/tex] by [tex](i)[/tex],
[tex]59sin[/tex]θ ÷ [tex]59cos[/tex]θ [tex]= Mg[/tex] ÷ [tex]38[/tex]
so,
[tex]Tan[/tex]θ [tex]= Mg[/tex] ÷ [tex]38[/tex]
∵ θ = [tex]Tan^-1 (Mg/38)[/tex]
To proceed further, we will square both [tex](i)[/tex] and [tex](ii)[/tex]
([tex]59cos[/tex]θ[tex])^2[/tex] [tex]= 38^2 N[/tex]
⇒ ([tex]59sin[/tex]θ[tex])^2[/tex] [tex]= (Mg)^2[/tex]
⇒ ([tex]59cos[/tex]θ[tex])^2[/tex] + ([tex]59sin[/tex]θ
by solving them through [tex](cos[/tex]θ[tex])^2[/tex] [tex]+ (sin[/tex]θ
[tex]Mg = 45.13 N[/tex]
Now by putting the value of Mg in [tex]Tan^-1 (Mg/38)[/tex], we get
θ [tex]= 50[/tex]°
Thus, [tex]50[/tex]° would be the angle of the theta along with the ceiling.
Learn more about "Equilibrium" here:
brainly.com/question/9813711