Answer:
0.0133 A
Explanation:
We are given that
Radius of coil=r=1.17 cm=[tex]\frac{1.17}{100}=0.0117 m[/tex]
1 m=100 cm
Distance between the coil=d=2.13 cm=0.0213 m
[tex]x=\frac{d}{2}=\frac{0.0213}{2}=0.01065 m[/tex]
Number of turns=N=38
2 N=2(38)=76
Magnetic field produced in coils=B=[tex]4.4\times 10^{-5} T[/tex]
Magnetic field along the axis of symmetry of loop wire
[tex]B=(2N)\times\frac{\mu_0 Ir^2}{(x^2+r^2)^{\frac{3}{2}}}[/tex]
Substitute the values
[tex]4.4\times 10^{-5}=76\frac{(4\pi\times 10^{-7}\times I\times (0.117)^2}{(0.01065)^2+(0.0117)^2)^{\frac{3}{2}}}[/tex]
[tex]I=4.4\times 10^{-5}\times\frac{((0.01065)^2+(0.0117)^2)^{\frac{3}{2}}}{76\times 4\pi\times 10^{-7}\times (0.117)^2}=0.0133 A[/tex]
I=0.0133 A