If the identical coils have radii of 1.17 cm and are 2.31 cm apart, with 38 turns of wire apiece, what current should they both carry to produce a magnetic field of 4.40 10-5 T halfway between them

Respuesta :

Answer:

0.0133 A

Explanation:

We are given that

Radius of coil=r=1.17 cm=[tex]\frac{1.17}{100}=0.0117 m[/tex]

1 m=100 cm

Distance between the coil=d=2.13 cm=0.0213 m

[tex]x=\frac{d}{2}=\frac{0.0213}{2}=0.01065 m[/tex]

Number of turns=N=38

2 N=2(38)=76

Magnetic field produced in coils=B=[tex]4.4\times 10^{-5} T[/tex]

Magnetic field along the axis of symmetry of loop wire

[tex]B=(2N)\times\frac{\mu_0 Ir^2}{(x^2+r^2)^{\frac{3}{2}}}[/tex]

Substitute the values

[tex]4.4\times 10^{-5}=76\frac{(4\pi\times 10^{-7}\times I\times (0.117)^2}{(0.01065)^2+(0.0117)^2)^{\frac{3}{2}}}[/tex]

[tex]I=4.4\times 10^{-5}\times\frac{((0.01065)^2+(0.0117)^2)^{\frac{3}{2}}}{76\times 4\pi\times 10^{-7}\times (0.117)^2}=0.0133 A[/tex]

I=0.0133 A

ACCESS MORE