Respuesta :
Answer:
[tex]T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}[/tex]
Explanation:
The given data :-
- Diameter of rod AB ( d₁ ) = 200 mm.
- Diameter of rod BC ( d₂ ) = 150 mm.
- The linear co-efficient of thermal expansion of copper ( ∝ ) = 1.6 × 10⁻⁶ /°C
- The young's modulus of elasticity of copper ( E ) = 120 GPa = 120 × 10³ MPa.
- Consider the required temperature increase to close the gap at C = T °C
- Consider the change in length of the rod = бL
Solution :-
[tex]\begin{aligned}\sum H& =0\\-R_A+R_C&=0\\R_A&=R_C\\R_A&=R\\R_C&=R\\R_{A}&=\text{reaction\:force\:at\:A}\\R_{C}&=\text{reaction\:force\:at\:C}\\\sigma_{AB}&=\text{axial\:stress\:at\:A}\\\sigma_{BC}&=\text{axial\:stress\:at\:B}\\\sigma_{AB}&=\frac{R}{A_{A}}\\&=\frac{R_{A}}{A_{A}}\\\sigma_{BC}&=\frac{R_{B}}{A_{B}}\\&=\frac{R}{A_{B}}\\\frac{\sigma_{AB}}{\sigma_{BC}}&=\frac{A_{B}}{A_{B}}\\&=\frac{\frac{\pi}{4}\cdot 150^{2}}{\frac{\pi}{4}\cdot 200^{2}}\\&=\frac{9}{16}\end{aligned}[/tex]
[tex]\begin{aligned}\delta L&= (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\0& = (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\&=\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{AB}+\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{BC}\\&=2\:\alpha\:T\:L-\frac{L}{E}(\sigma_{AB}+\sigma_{BC})\\T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}\end{aligned}[/tex]