A bag contains 6 Cherry Starbursts and 24 other flavored Starburts. 5 Starbursts are chosen randomly without replacement.

Find the probability that 3 of the Starbursts drawn are cherry.

Respuesta :

Answer:

Required probability [tex]=\frac{920}{23751}[/tex]

Step-by-step explanation:

Given that a bag contains 6 Cherry Starbursts and 24 other flavored Starbursts and 5 Starbursts are chosen randomly without replacement.  We need to find probability that 3 of the Starbursts drawn are cherry.

The number of ways of selecting 5 starbursts out of which 3 are cherry = 3 from 6 Cherry Starbursts 2 from 24 other flavored Starbursts

[tex]=\begin{pmatrix}6\\ 3\end{pmatrix}\times \begin{pmatrix}24\\ 2\end{pmatrix}[/tex]

[tex]=\frac{6!}{3!\times 3!}\times \frac{24!}{2!\times 22!}[/tex]

[tex]=\frac{6\times 5\times 4\times 3!}{3!\times 3\times 2\times 1}\times \frac{24\times 23\times 22!}{2\times 1\times 22!}[/tex]

[tex]=5520[/tex]

Number of ways of selecting 5 starbursts out of 30 starbursts

= [tex]\begin{pmatrix}30\\ 5\end{pmatrix}[/tex]

[tex]=\frac{30!}{5!\times 25!}[/tex]

[tex]=\frac{30\times 29\times 28\times 27\times 26\times 25!}{2\times 1\times 25!}[/tex]

[tex]= 142506[/tex]

Required probability = [tex]=\frac{favorable\, cases}{possible \, cases}[/tex][tex]=\frac{5520}{142506}=\frac{920}{23751}[/tex]

ACCESS MORE