Answer:
Required probability [tex]=\frac{920}{23751}[/tex]
Step-by-step explanation:
Given that a bag contains 6 Cherry Starbursts and 24 other flavored Starbursts and 5 Starbursts are chosen randomly without replacement. We need to find probability that 3 of the Starbursts drawn are cherry.
The number of ways of selecting 5 starbursts out of which 3 are cherry = 3 from 6 Cherry Starbursts 2 from 24 other flavored Starbursts
[tex]=\begin{pmatrix}6\\ 3\end{pmatrix}\times \begin{pmatrix}24\\ 2\end{pmatrix}[/tex]
[tex]=\frac{6!}{3!\times 3!}\times \frac{24!}{2!\times 22!}[/tex]
[tex]=\frac{6\times 5\times 4\times 3!}{3!\times 3\times 2\times 1}\times \frac{24\times 23\times 22!}{2\times 1\times 22!}[/tex]
[tex]=5520[/tex]
Number of ways of selecting 5 starbursts out of 30 starbursts
= [tex]\begin{pmatrix}30\\ 5\end{pmatrix}[/tex]
[tex]=\frac{30!}{5!\times 25!}[/tex]
[tex]=\frac{30\times 29\times 28\times 27\times 26\times 25!}{2\times 1\times 25!}[/tex]
[tex]= 142506[/tex]
Required probability = [tex]=\frac{favorable\, cases}{possible \, cases}[/tex][tex]=\frac{5520}{142506}=\frac{920}{23751}[/tex]