A brick walkway forms the diagonal of a square playground. The walkway is 20 m long. To the nearest tenth of a meter, how long is one side of the playground?

Respuesta :

Answer:

length of one side of the play ground is [tex]x=14 \ meters[/tex] .

Step-by-step explanation:

Given:

Ground is a squared shape

diagonal of the square is = 20m

Required:

Length of one side of the playground=[tex]x=?[/tex]

Solution:

As we know that in square all sides are of equal length so let the length of one side of a square is [tex]x[/tex].

The diagonal of a square divides the square into two 45-45-90 triangles.

in 45-45-90 triangle the sides are [tex]x, x, \ and \ x\sqrt{2}[/tex] as shown in the figure (attached below)

[tex]x\sqrt{2}[/tex] is the diagonal of the square so [tex]x\sqrt{2}=20\\x=\frac{20}{\sqrt{20} }\\ x=10\sqrt{2} \ OR \ 14.142[/tex]

so the length of one side of the ground is [tex]x=14.142\ meters[/tex]

rounding the answer to nearest tenth of a meter, we get

[tex]x=14 \ meters[/tex]

Ver imagen kamrankhan7503