Respuesta :
Answer:
Therefore,
[tex]Area\ of\ Circle = 25\pi \ units^{2}[/tex]
Step-by-step explanation:
Given:
[tex]Area\ of\ sector = \dfrac{45}{4}\pi[/tex]
[tex]Central\ angle =\theta = \dfrac{9}{10}\pi[/tex] ( in Radians)
To Find:
Area of Circle = ?
Solution:
If "θ" is measured in radians then area of sector is given by,
[tex]Area\ of\ sector = \dfrac{1}{2}\times r^{2}\theta[/tex]
Where,
θ = Central angle in radians
r =radius of a circle
Substituting the values we get
[tex]\dfrac{45}{4}\pi= \dfrac{1}{2}\times r^{2}\times \dfrac{9}{10}\pi[/tex]
On solving we get
[tex]r^{2}=25\\\\Square\ Rooting\\\\r = \sqrt{25}=5\ units[/tex]
Now, Area of Circle is given by,
[tex]Area\ of\ Circle = \pi r^{2}[/tex]
Substituting the values we get
[tex]Area\ of\ Circle = 25\pi \ units^{2}[/tex]
Therefore,
[tex]Area\ of\ Circle = 25\pi \ units^{2}[/tex]
Answer:
10 pi cm square
Step-by-step explanation:
khan academy