Answer : The exit temperature of the product is, [tex]-35.2^oC[/tex]
Explanation :
Total heat = Heat lost by liquid + Latent heat of fusion + Heat lost by frozen
[tex]Q=m\times c_1\times (T_2-T_1)+m\times L_f+m\times c_2\times (T_4-T_3)[/tex]
where,
Q = Total heat = 6000 kJ
m = mass of product = 15 kg
[tex]c_1[/tex] = specific heat of liquid = [tex]4kJ/kg^oC[/tex]
[tex]L_f[/tex] = latent heat of fusion = [tex]275kJ/kg[/tex]
[tex]c_2[/tex] = specific heat of frozen = [tex]2.5kJ/kg^oC[/tex]
[tex]T_1[/tex] = initial temperature of liquid = [tex]2^oC[/tex]
[tex]T_2[/tex] = final temperature of liquid = [tex]10^oC[/tex]
[tex]T_3[/tex] = initial temperature of frozen = ?
[tex]T_4[/tex] = final temperature of frozen = [tex]2^oC[/tex]
Now put all the given value in the above expression, we get:
[tex]6000kJ=[15kg\times 4kJ/kg^oC\times (10-2)^oC]+[15kg\times 275kJ/kg]+[15kg\times 2.5kJ/kg^oC\times (2-T_3)^oC][/tex]
[tex]T_3=-35.2^oC[/tex]
Thus, the exit temperature of the product is, [tex]-35.2^oC[/tex]