A large traffic cone stands 28 inches in height and has a volume of 732.7 cubic inches. What is the diameter of the base of the cone? Use 3.14 for pi. Show your work

Respuesta :

Answer:

[tex]d=10.0002\ inches[/tex]

Step-by-step explanation:

Given That:

Height=h=28 inches

Volume=V=732.7 cubic inches

Required:

Diameter of the base of the cone=d=?

Solution:

the formula for the volume of a cone is

[tex]V=\frac{1}{3}\pi\ r^{2}h[/tex]

re-arranging the terms to get the radius (r)

[tex]r^{2}= \frac{3V}{\pi h}\\r=\sqrt{\frac{3V}{\pi h}}[/tex]

putting values, we get

[tex]r=\sqrt{\frac{3(732.7)}{3.14(28)} }[/tex]

[tex]r=\sqrt{\frac{2198.1}{87.92} } \\r=\sqrt{25.001}\\ r=5.0001\ inches[/tex]

to find the diameter we know that diameter is double of the radius so[tex]d=2r\\d=2(5.0001)\\d=10.0002 \ inches[/tex]

ACCESS MORE