[tex]\boldsymbol{\mathbf{Answer}}[/tex]
[tex]\boldsymbol{\mathbf{213\,shoppers\, will\, visit\,on \, first\, seventh\, day}}[/tex]
[tex]\boldsymbol{\mathbf{Step-by-step explanation}}[/tex]
Let, No of shoppers on first day = a
No of shoppers on second day = b
Similarly till seventh day,
Therfore shoppers on seventh day=
a + b + c + d + e + f + g
As mentioned ,number of shoppers is 10% more than the number of shoppers the day before. i.e we can understand that a to g all are 1.1 times bigger than the previous letter.
That means all are in geometric series.
We know the formula for sum of geometric series is,
=[tex]\boldsymbol{\mathbf{\sum {a}\times{r^{(n-1)}}}}[/tex]
[tex]\boldsymbol{\mathbf{a \, is\, first\, value}}[/tex]
[tex]\boldsymbol{\mathbf{r \, is\, multiplication\, factor\, value}}[/tex]
[tex]\boldsymbol{\mathbf{n \, is\, no\, items\, in\, series}}[/tex]
That is,
a = 120
r = 1.1
n = 7
=[tex]\sum {120}\times{1.1^{(7-1)}}[/tex]
=[tex]{120}\times{1.7715}[/tex]
= 212.58
Approximately
[tex]\boldsymbol{\mathbf{=\, 213 \,shoppers \,will\, be \,there\, on \,seventh \,day.}}[/tex]