Respuesta :
Answer:
The relationship between the initial stored energy [tex]PE_{i}[/tex] and the stored energy after the dielectric is inserted [tex]PE_{f}[/tex] is:
c) [tex]PE_{f} =0.5\ PE_{i}[/tex]
Explanation:
A parallel plate capacitor with [tex]C_{o}[/tex] that is connected to a voltage source [tex]V_{o}[/tex] holds a charge of [tex]Q_{o} =C_{o} V_{o}[/tex]. Then we disconnect the voltage source and keep the charge [tex]Q_{o}[/tex] constant . If we insert a dielectric of [tex]\kappa=2[/tex] between the plates while we keep the charge constant, we found that the potential decreases as:
[tex]V=\frac{V_{o}}{\kappa}[/tex]
The capacitance is modified as:
[tex]C=\frac{Q}{V} =\kappa\frac{Q_{o}}{V_{o}}=\kappa\ C_{o}[/tex]
The stored energy without the dielectric is
[tex]PE_{i}=\frac{1}{2}\frac{Q_{o}^{2}}{C_{o}}=\frac{1}{2}C_{o}V_{o}^{2}[/tex]
The stored energy after the dielectric is inserted is:
[tex]PE_{f}=\frac{1}{2}\frac{Q^{2}}{C}=\frac{1}{2}CV^{2}[/tex]
If we replace in the above equation the values of V and C we get that
[tex]PE_{f}=\frac{1}{2}\kappa\ C_{o}(\frac{V_{o}}{\kappa})^{2}=\frac{1}{\kappa}(\frac{1}{2}C_{o}V_{o}^{2})[/tex]
[tex]PE_{f} =\frac{PE_{i}}{\kappa}[/tex]
Finally
[tex]PE_{f} =0.5\ PE_{i}[/tex]