Respuesta :
Answer:
98% confidence interval for the average age of all students is [24.302 , 25.698]
Step-by-step explanation:
We are given that a random sample of 36 students at a community college showed an average age of 25 years.
Also, assuming that the ages of all students at the college are normally distributed with a standard deviation of 1.8 years.
So, the pivotal quantity for 98% confidence interval for the average age is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample average age = 25 years
[tex]\sigma[/tex] = population standard deviation = 1.8 years
n = sample of students = 36
[tex]\mu[/tex] = population average age
So, 98% confidence interval for the average age, [tex]\mu[/tex] is ;
P(-2.3263 < N(0,1) < 2.3263) = 0.98
P(-2.3263 < [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 2.3263) = 0.98
P( [tex]-2.3263 \times {\frac{\sigma}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.3263 \times {\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.98
P( [tex]\bar X - 2.3263 \times {\frac{\sigma}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.3263 \times {\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.98
98% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X - 2.3263 \times {\frac{\sigma}{\sqrt{n} }[/tex] , [tex]\bar X +2.3263 \times {\frac{\sigma}{\sqrt{n} }[/tex] ]
= [ [tex]25 - 2.3263 \times {\frac{1.8}{\sqrt{36} }[/tex] , [tex]25 + 2.3263 \times {\frac{1.8}{\sqrt{36} }[/tex] ]
= [24.302 , 25.698]
Therefore, 98% confidence interval for the average age of all students at this college is [24.302 , 25.698].