Answer:
Explanation:
Given
mass of saturated liquid water [tex]m=1.4\ kg[/tex]
at [tex]200^{\circ}[/tex] specific volume is [tex]\nu =0.001157\ m^3\kg[/tex](From Table A-4,Saturated water Temperature table)
[tex]V_1=m\nu _1[/tex]
[tex]V_1=1.4\times 0.001157[/tex]
[tex]V_1=1.6198\times 10^{-3}\ m^3[/tex]
Final Volume [tex]V_2=4V_1[/tex]
[tex]V_2=4\times (1.6198\times 10^{-3})[/tex]
[tex]V_2=6.4792\times 10^{-3}\ m^3[/tex]
Specific volume at this stage
[tex]\nu _2=\frac{V_2}{m}[/tex]
[tex]\nu _2=\frac{6.4792\times 10^{-3}}{1.4}[/tex]
[tex]\nu _2=0.004628\ m^3/kg[/tex]
Now we see the value and find the temperature it corresponds to specific volume at vapor stage in the table.
[tex]T_2=T_1^{*}+\frac{T_2^{*}-T_1^{*}}{\alpha _2^{*}-\alpha _1^{*}}\times (\alpha _2-\alpha _1^{*})[/tex]
[tex]T_2=370^{\circ}+\frac{373.95-370}{0.003106-0.004953}\times (0.004628-0.004953)[/tex]
[tex]T_2=370.7^{\circ} C[/tex]