Answer:
[tex]q = 3.76 *10^{16}C[/tex]
Explanation:
The charge of the raindrop Q = [tex]4*10^{-8}C[/tex]
The charge on the bulb (q) = ???
The force (F) = [tex]5*10^{-11}N[/tex]
The separation of the raindrop from the bulb = 5.2 m
However, the force of attraction between the charge is given by the Coulomb's Law which is expressed as:
[tex]F = \frac{kQq}{d^2}[/tex]
where:
Coulomb's constant (k) = [tex]9*10^{-9} Nm^/C^2[/tex]
[tex]5*10^{-11}N=\frac{9*10^{-9}\frac{Nm^2}{C^2} *4*10^{-18}C*q}{(5.2m)^2}[/tex]
[tex]5*10^{-11}N*(5.2m)^2 = 9*10^{-9}\frac{Nm^2}{C}*4*10^{-18}*q[/tex]
[tex]1.352*10^{-9}Nm^2 = 3.6*10^{-26}\frac{Nm^2}{C}*q[/tex]
[tex]q = \frac{1.352*10^{-9}Nm^2}{3.6*10^{-26}\frac{Nm^2}{C} }[/tex]
[tex]q = 3.76 *10^{16}C[/tex]
Therefore, the charge on the end of the car antenna = [tex]3.76 *10^{16}C[/tex]